

CALIDAD DEL AIRE

Área metropolitana de Lima y Callao

VIGILANCIA DE LA CALIDAD DEL AIRE EN EL ÁREA METROPOLITANA DE LIMA Y CALLAO (AMLC) – OCTUBRE 2023

PRESENTACIÓN

El Servicio Nacional de Meteorología e Hidrología (SENAMHI) presenta el boletín mensual sobre la vigilancia de la calidad del aire en el Área Metropolitana de Lima y Callao (AMLC), en el cual los tomadores de decisión y público en general podrán encontrar información sobre los principales contaminantes atmosféricos al que se encuentran expuestos.

Para un mejor entendimiento de las variaciones espaciales y temporales de los contaminantes atmosféricos, se ha utilizado información meteorológica de superficie (datos de las estaciones meteorológicas automáticas del SENAMHI). Asimismo, se realizó un análisis sinóptico y oceánico a partir de la documentación técnica del SENAMHI para el mes de octubre^{1,2} y las salidas resultantes de la aplicación del modelo Weather Reserach and Forecasting (WRF)³ para el ámbito del AMLC. Por otro lado, se realizó un análisis del comportamiento del tránsito vehicular lento en el AMLC a partir de imágenes de Google Traffic⁴. Con respecto a la información de contaminantes del aire, se usaron los datos de la Red de Monitoreo Automático de la Calidad del Aire (REMCA) de SENAMHI e información del satélite Sentinel 5P⁵.

Toda persona tiene derecho de gozar de un ambiente equilibrado y adecuado al desarrollo de su vida.

Constitución Política del Perú. Artículo 2, inciso 22.

¹ Informe de Vigilancia Sinóptica de Sudamérica – octubre 2023. Obtenido de: https://www.senamhi.gob.pe/load/file/02214SENA-104.pdf

² Boletín climatológico de Lima – octubre 2023. Obtenido de: https://www.senamhi.gob.pe/load/file/02232SENA-112.pdf

³ Sistema de predicción meteorológica a mesoescala de última generación diseñado tanto para la investigación atmosférica como para aplicaciones de predicción operativa (Mesoscale & Microscale Meteorology Laboratory - NCAR, s.f.).

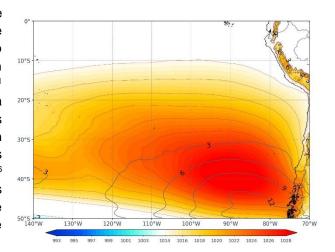
⁴ Visor web de la empresa Google que muestran en tiempo real y a nivel histórico el estado del tránsito vehicular en las calles del AMLC desde una categoría de rápido a lento.

⁵ Satélite de la misión Copernicus de la Agencia Espacial Europea que realiza mediciones atmosféricas con alta resolución espacio-temporal (The European Space Agency, s.f.).

1. ANALISIS SINOPTICO Y OCEANICO

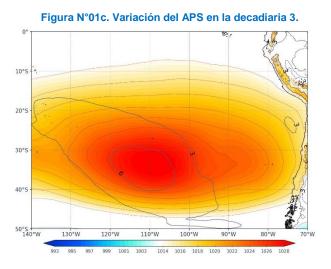
Para un mejor entendimiento de las condiciones sinópticas a niveles bajos y oceánicos en el AMLC, se realizó un análisis por decadiarias (cada diez días), obteniéndose tres periodos de análisis. Es así que, para el mes de octubre se conformó la decadiaria 1 (del 1 al 10), decadiaria 2 (del 11 al 20) y decadiaria 3 (del 21 al 31).

1.1. PRIMERA DECADIARIA (1 al 10 de octubre)


Durante la primera decadiaria, el APS presentó un área mayor y núcleo en 35°S y 110°W con valores de intensidad superiores a 1028 hPa, siendo muy intenso con respecto a lo climatológico¹ (Figura N°01a). Los vientos incidentes sobre la costa del AMLC a nivel de superficie presentaron una dirección predominante del sureste, con velocidades entre 2 y 6 m/s. Por otro lado, las anomalías de Temperatura Superficial del Mar (ATSM) estuvieron cercanos a los +1.6°C frente a las costas de AMLC6, lo cual repercutió en el incremento de temperaturas máximas y mínimas del aire por encima de su normal en +3.2°C y +1.0°C respectivamente².

1.2. SEGUNDA DECADIARIA (11 al 20 de octubre)

Para la segunda decadiaria, el núcleo del APS se encontró posicionado en los 35°S y 90°W con valores de presión superiores a los 1028 hPa, manteniendo un ligero desplazamiento hacia el este (cercano a continente) y un incremento de la intensidad respecto a lo climatológico¹ (Figura N° 01b), esta condición pudo incrementar la velocidad de los vientos en costa. Los vientos incidentes sobre la costa del AMLC a nivel de superficie presentaron una dirección predominante del sur y con velocidades entre 4 m/s y 6 m/s. Por otro lado, respecto a las ATSM6 estas se encontraron alrededor de los +1.7°C frente a las costas del AMLC ⁴, lo cual repercutió en el incremento de temperaturas máximas y mínimas del aire por encima de su normal en +2.2°C y +0.9°C respectivamente².


Figura N°01a. Variación del APS en la decadiaria 1.

1.3. TERCERA DECADIARIA (21 al 31 de octubre)

Finalmente para la tercera decadiaria, el APS predominó sobre un área mayor y núcleo en 35°S y 110°W con valores de presión superiores a los 1028 hPa, lo cual fue muy intenso con respecto a su climatología¹ (Figura N°01c), esta condición incrementó la velocidad de vientos en costa. Estos vientos presentaron una dirección predominante del sureste, paralelos a la costa y con velocidades entre 5 y 6 m/s. Por otro lado, respecto a las ATSM estas se encuentran en +1.7°C frente a las costas de AMLC6, lo cual repercutió en las temperaturas máximas y mínimas del aire, ubicándose por encima de su normal en 2.3°C y 1.2°C respectivamente².

2. CONDICIONES METEOROLÓGICAS LOCALES EN EL AMLC

Con los datos de las estaciones meteorológicas automáticas (EMA) ubicadas en el AMLC, se realizó un análisis de la variabilidad diaria de la humedad relativa y la temperatura a 2 metros de la superficie (mds), y la velocidad del viento a 10 mds. Los datos provinieron de las estaciones: Antonio Raimondi (AR), Carabayllo (CRB), Puente Piedra (PPD), San Martín de Porres (SMP), Santa Anita (STA), San Juan de Lurigancho (SJL), Ceres (CRS), Alexander Von Humboldt (VH), Campo de Marte (CDM), San Borja (SBJ) y Villa María del Triunfo (VMT). Adicionalmente se representó la variabilidad diaria de la capa límite atmosférica (CLA)⁷ para lo cual se usó datos del modelo operativo WRF 1km.

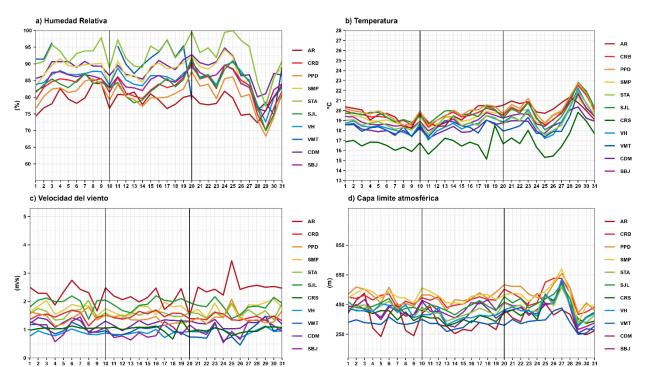


Figura N°02. Variación diaria de las variables meteorológicas en el ALMC dividido en 3 decadiarias

Con respecto a la Humedad Relativa (Figura N°02a), durante la primera decadiaria se presentaron valores entre 74.3% a 97.9%, para la segunda decadiaria valores entre 76.6% y 99.6%, y en la tercera decadiaria valores entre 68.3 a 99.9%, de las cuales, las estaciones STA y VMT mantuvieron los valores más altos. Por otro lado, en relación a la temperatura (Figura N°02b) durante la primera decadiaria presentó valores

⁷ CLA: parte de la tropósfera influenciada directamente por la superficie terrestre, donde se concentra la mayor cantidad de sustancias contaminantes.

entre 15.9 y 20.4 °C, para la segunda decadiaria valores entre 15.1 y 20.5 °C, y en la tercera decadiaria valores entre 15.3 y 22.8 °C, además, presentó una tendencia al incremento de las temperaturas hacia su tercera decadiaria. En cuanto a la velocidad del viento (Figura N° 02c), éste llegó a ser muy variable, lo cual se refleja en sus valores, los mismos que oscilaron entre 0.4 a 3.4 m/s durante todo el mes. En el caso de la CLA (Figura N°02d) se presentó una tendencia ligera al incremento en la segunda y tercera decadiaria; asimismo, las estaciones CRB, PPD y SMP alcanzaron los valores más altos y por su parte, las estaciones de VMT y AR los valores más bajos.

2.1. ALTURA DE LA BASE DE LA NUBE

De acuerdo al comportamiento horario de la altura de la base de la nube (abn) registrada por el ceilómetro⁸ de la EMA Aeropuerto Internacional Jorge Chávez ubicada en el Callao (figura N°03), se observó que las nubes bajas (abn menor a 2000 m) tuvieron mayor presencia (91.3%) durante el mes de octubre, seguido de una mucho menor presencia (1.9 %) de nubes medias (abn mayor a 2000 m y menor a 6000 m). Esto último no significa que no haya habido presencia de nubes altas (abn mayor a 6000 m), sino más bien que solo se registra la altura de la base de la nube más cercana a la superficie, por lo que podría haber nubes medias y altas por encima de éstas.

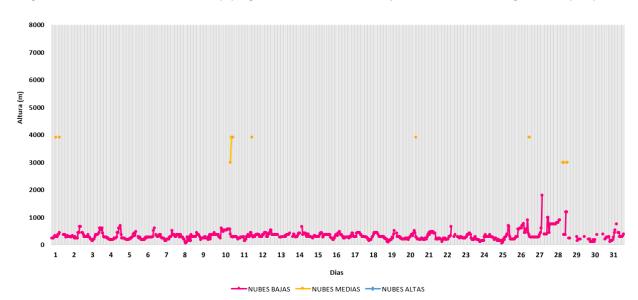
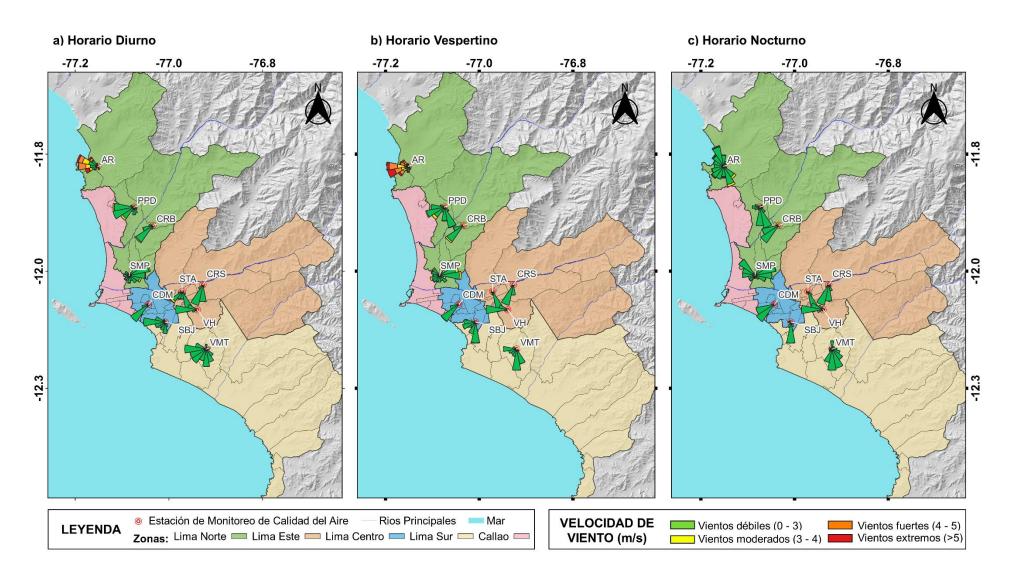


Figura N°03. Altura de base de la nube (m) registrada en la estación Aeropuerto Internacional Jorge Chávez (JCH).

En comparación al mes de setiembre, se presentó una mayor cantidad de días despejados hacia finales de mes y un incremento de los días con nubes medias; sin embargo, predominó la presencia de nubes bajas, lo cual aún sigue siendo característico de la primavera, evidenciando ello una persistencia de la estabilidad atmosférica principalmente durante la primera mitad de octubre.

2.2. ANALISIS DEL VIENTO EN SUPERFICIE POR HORARIOS

A partir de la información de velocidad y dirección de viento de las EMA ubicadas en el AMLC, se tiene que, en el horario diurno, las estaciones CRB y CDM presentaron vientos con una predominancia del suroeste (SO) y con categoría moderada (3-4 m/s) y débil (0-3 m/s) respectivamente, en cambio las estaciones VMT, VH, SBJ y PPD, tuvieron predominancia del oeste y con una categoría de débil, excepto para PPD que alcanzo vientos moderados. Por otro lado, en la estación CRS, tuvo una dirección predominante del sur suroeste (SSO) y una magnitud de débil. En el caso de las estación AR presentó vientos con una dirección predominante del oeste noroeste (ONO) y alcanzando una categoría extrema (> 5 m/s), la estación SMP presentó vientos con una dirección predominante del este noreste (ENE) y con una categoría moderada (3-4 m/s) y finalmente, la estación STA presentó vientos con una predominancia del sur sureste (SSE) alcanzando una categoría de débil.


⁸ Instrumento que mide la altura de la base de la nube más cercana a superficie tomando a ésta como referencia.

Para el horario vespertino, las estaciones CRB y CDM presentaron vientos con una predominancia del suroeste (SO) y con categoría de moderada y de débil respectivamente. Por otro lado, en la estación CRS, tuvo una dirección predominante del sur suroeste (SSO) y una magnitud de débil. Asimismo, las estaciones SBJ y VMT, los vientos alcanzaron una categoría débil y con dirección predominante del sur (S). Asimismo, las estaciones PPD y STA presentaron vientos con una predominancia del sur sureste (SSE) alcanzando una categoría de moderada y débil respectivamente. Con respecto a las estaciones AR y VH presentaron vientos con una dirección predominante del oeste (O) de categoría extrema y débil respectivamente. Finalmente, la estación SMP presentó vientos con una predominancia del este (E) alcanzando una categoría moderada.

Para el horario nocturno, las estaciones AR, PPD y STA presentaron vientos con una predominancia del sur sureste (SSE) y de categoría débil, excepto para AR que alcanzo la intensidad de moderada. Asimismo, las estaciones CDM y CRB presentaron vientos con una predominancia del sur suroeste (SSO) y de categoría débil; mientras que, las estaciones SBJ y VMT presentan vientos con una predominancia del sur (S) y de categoría débil. Con respecto a la estación CRS, tuvo una dirección predominante del sur suroeste (SSO) y una magnitud de débil. Por otro lado, la estación SMP presentó vientos con una predominancia del este noreste (ENE) y la estación VH presentó vientos con una predominancia del oeste (O), ambos de categoría débil.

......

Figura N°04. Rosas de viento para diferentes horarios en el AMLC.

Las figura N° 04 muestra el comportamiento de la dirección y velocidad del viento en cada una de las estaciones meteorológicas automáticas para los horarios diurnos (07:00 - 12:59 horas), vespertinos (13:00 -18:59 horas) y nocturnos (19:00 - 06:59 horas).

3. ACTIVIDAD VEHICULAR EN EL AMLC

La actividad vehicular tiene una contribución de más del 50% sobre la contaminación del aire en el AMLC.⁹ De esta manera, un alto porcentaje de tránsito vehicular lento está estrechamente relacionado con el incremento de emisiones de contaminantes del aire, mientras que un bajo porcentaje de éstas, se relaciona a una disminución de emisiones.

De acuerdo a lo mencionado, se han utilizado imágenes de Google Traffic y técnicas de inteligencia artificial como la visión por computadora¹⁰ a fin de cuantificar en porcentaje los estados del tránsito vehicular para cada una de las zonas del AMLC (Lima Norte, Este, Centro, Sur y Callao).

En la Figura N°05 se puede observar que durante la segunda decadiaria, se registraron porcentajes altos de tránsito vehicular lento en las zonas de Lima Norte, Este y Sur. En contraste, en la tercera decadiaria se aprecia una disminución habiéndose presentado los valores máximos en Lima Norte y Este.

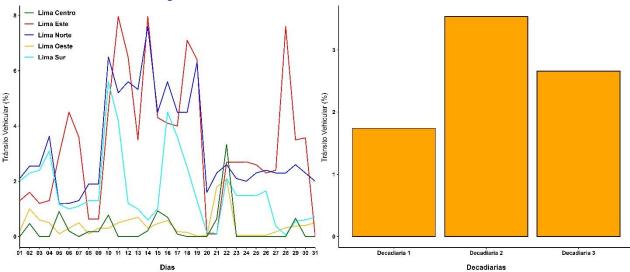
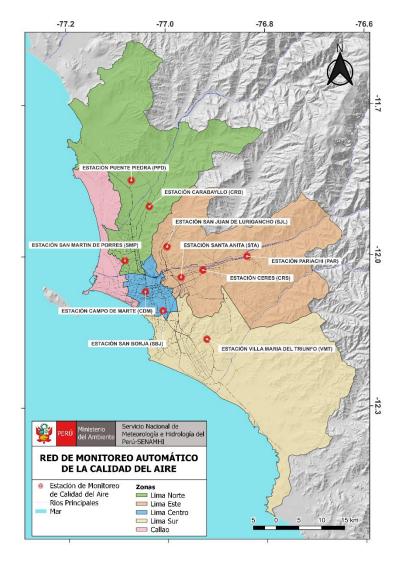


Figura N°05. Variación diaria del tránsito vehicular en el AMLC.

¹⁰ La visión por computadora es una rama de la inteligencia artificial y la informática asociado al análisis de imágenes, la cual incorpora un conjunto de técnicas, algoritmos y sistemas que facultan a una computadora con la capacidad de "ver" y extraer información a partir de lo que han "visto", la cual puede ser reconocer patrones, objetos o personas, entre otras tareas visuales. Obtenido de: https://iaarbook.github.io/vision-por-computadora/, https://www.ibm.com/mx-es/topics/computer-vision

8

⁹ Estudio: Diagnóstico de la Gestión de la Calidad Ambiental del Aire de Lima y Callao. Obtenido de: https://sinia.minam.gob.pe/documentos/diagnostico-gestion-calidad-ambiental-aire-lima-callao


4. RED DE MONITOREO AUTOMÁTICO DE LA CALIDAD DEL AIRE EN EL AMLC

El SENAMHI realiza la vigilancia a través de una Red de Monitoreo Automático de la Calidad del Aire (REMCA), la cual mide las concentraciones horarias de los contaminantes PM₁₀ (material particulado menor a 10 micras), PM_{2,5} (material particulado menor a 2,5 micras), NO₂ (dióxido de nitrógeno), O₃ (ozono troposférico) y CO (monóxido de carbono).

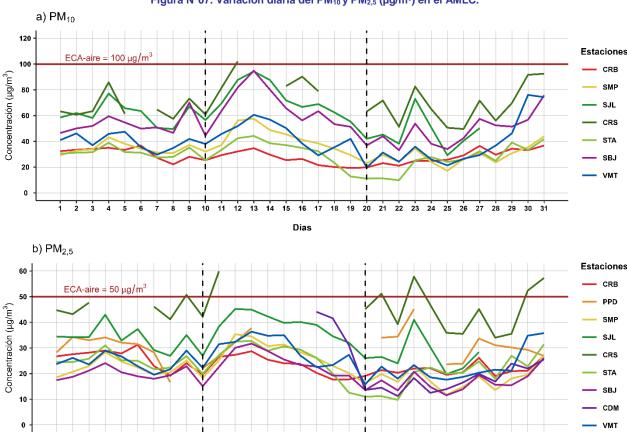
Cuadro Nº 01. Zonas, nombres y ubicación de las estaciones de monitoreo de la calidad del aire.

ZONA	NOMBRE/UBICACIÓN		
	Estación Puente Piedra (PPD) Complejo Municipal "El gallo de oro" del distrito de Puente Piedra		
Norte	Estación Carabayllo (CRB) Piscina Municipal del distrito de Carabayllo		
	Estación San Martín de Porres (SMP) Parque Ecológico del distrito de San Martín de Porres		
Este	Estación San Juan Lurigancho (SJL) Universidad César Vallejo en el distrito de San Juan de Lurigancho		
	Estación Ceres (CRS) Plaza Cívica de Ceres distrito de Ate		
	Estación Pariachi (PAR) Parque Barrantes Lingan - Pariachi 2a etapa distrito de Ate		
	Estación Santa Anita (STA) Palacio Municipal del distrito de Santa Anita		
Sur	Estación Villa María del Triunfo (VMT) Parque Virgen de Lourdes Zona Nueva Esperanza en el distrito de Villa María del Triunfo		
Centro	Estación San Borja (SBJ) Polideportivo Limatambo del distrito de San Borja		
	Estación Campo de Marte (CDM) Parque Campo de Marte en el distrito de Jesús María.		

Figura Nº06. Ubicación de las estaciones de monitoreo de la calidad del aire en el AMLC.

Estándar de Calidad Ambiental (ECA)

La Ley N° 28611 - Ley General del Ambiente define al estándar de calidad ambiental (ECA) como "la medida que establece el nivel de concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos presentes en el aire, agua y suelo en su condición de cuerpo receptor, que no representa riesgo significativo para la salud de las personas ni al ambiente". Por lo tanto, para el caso de los contaminantes del aire, las concentraciones de cada uno de estos no deben superar su respectivo Estándar de Calidad Ambiental para Aire (ECA-aire) a fin de evitar problemas en la salud de las personas y el ambiente. Asimismo, los valores de los ECA-aire son establecidos por el Ministerio del Ambiente (MINAM) y estipulados en el D.S. N° 003-2017-MINAM.


4.1. VIGILANCIA DE LA CALIDAD DEL AIRE A TRAVÉS DE ESTACIONES DE MONITOREO EN EL AMLC

Con los datos de las estaciones de monitoreo de la calidad del aire ubicadas en el AMLC, se realizó un análisis de la variabilidad diaria de las concentraciones del PM₁₀ y PM_{2.5} durante el mes de octubre. Los datos provinieron de las estaciones: Carabayllo (CRB), Puente Piedra (PPD), San Martin de Porres (SMP), San Juan de Lurigancho (SJL), Ceres (CRS), Santa Anita (STA), San Borja (SBJ) y Villa María del Triunfo (VMT).

4.1.1. MATERIAL PARTICULADO (PM)

En la figura Nº 07a se observa que las concentraciones diarias de PM₁₀ registradas en las estaciones no superaron el valor de su ECA-aire (100 μg/m³ como promedio diario) durante los días monitoreados a excepción de la estación CRS durante la segunda decadiaria. Asimismo, se pudo destacar que, en la zona norte, la estación SMP alcanzó una concentración máxima de 57.5 μg/m³ (viernes 13); en la zona este, la estación CRS una concentración máxima de 102 μg/m³ (jueves 12); en la zona centro, la estación SBJ una concentración máxima de 94.7 μg/m³ (viernes 13) y en la zona sur, la estación VMT una concentración máxima de 76 μg/m³ (martes 31).

Por otro lado, en la figura N° 07b, se observa que las concentraciones diarias de $PM_{2,5}$ registradas en las estaciones no superaron el ECA-aire para $PM_{2.5}$ (50 $\mu g/m^3$ como promedio diario) durante los días monitoreados, a excepción de la estación CRS en todas las decadiarias. Asimismo, se pudo destacar que, en la zona norte, la estación PPD alcanzó una concentración máxima de 45.1 $\mu g/m^3$ (lunes 23); en la zona este, la estación CRS una concentración máxima de 59.9 $\mu g/m^3$ (miércoles 11); en la zona centro, la estación SBJ una concentración máxima de 31.7 $\mu g/m^3$ (miércoles 13) y en la zona sur, la estación VMT una concentración máxima de 36.3 $\mu g/m^3$ (miércoles 13).

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Dias

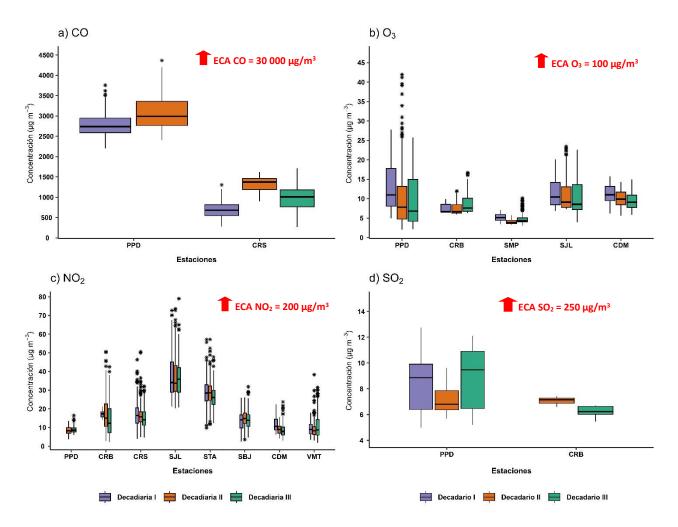
Figura N°07. Variación diaria del PM₁₀ y PM_{2,5} (μg/m³) en el AMLC.

Del comportamiento decadiario, se tiene que, para el PM₁₀, se observaron los mayores valores de las concentraciones en la decadiaria 2 y 3, los cuales pudieron estar relacionados al incremento de la temperatura y la disminución de la altura de la capa límite atmosférica (ver Figura N° 02b y 02d).

Con respecto al PM_{2,5}, se observaron los mayores valores de las concentraciones en la decadiaria 2 y 3, los cuales pudieron estar asociados a episodios de disminución de la altura de la capa límite atmosférica (ver Figura N° 02d); así como a los incrementos en el tránsito vehicular lento (ver Figura N° 05).

4.1.2. GASES (CO, O₃ y NO₂)

En la figura Nº 08a se observa que las concentraciones horarias de CO registradas en las estaciones no superaron el valor de su ECA-aire (30 000 μ g/m³ como promedio horario) durante los días monitoreados. Asimismo, se pudo apreciar que para la zona norte, la estación PPD presentó una concentración máxima de 4365.4 μ g/m³ (16 de octubre a las 23:00 horas) y la mínima fue 2197.6 μ g/m³ (07 de octubre a las 14:00 horas); y en la zona este, la estación CRS presentó una concentración máxima de 1712.3 μ g/m³ (21 de octubre a las 23:00 horas) y la mínima fue 270.2 μ g/m³ (31 de octubre a las 06:00 horas).


Respecto a la figura N^0 08b se observa que las concentraciones promedio de cada 8 horas de O_3 registradas en las estaciones no superaron el valor de su ECA-aire (100 μ g/m³ como máxima media diaria de 8 horas) durante los días monitoreados. Asimismo, se pudo apreciar que para la zona norte, la estación PPD presentó una concentración máxima de 41.9 μ g/m³ (13 de octubre); en la zona este, la estación SJL una concentración máxima de 23.5 μ g/m³ (13 de octubre); y en la zona centro, la estación CDM una concentración máxima de 15.8 μ g/m³ (10 de octubre).

Por otro lado, en la figura N° 08c, se observa que las concentraciones horarias de NO_2 registradas en las estaciones no superaron el valor de su ECA-aire (200 µg/m³ como promedio horario) durante los días monitoreados. Asimismo, se pudo destacar que en la zona norte, la estación CRB alcanzó una concentración máxima de 50.6 µg/m³ (13 de octubre a las 12:00 horas); en la zona este, la estación SJL alcanzó una concentración máxima de 79 µg/m³ (23 de octubre a las 16:00 horas); en la zona centro, la estación SBJ una concentración máxima de 31.8 µg/m³ (28 de octubre a las 22:00 horas); y en la zona sur, la estación VMT una concentración máxima de 38.3 µg/m³ (13 de octubre a las 12:00 horas).

Finalmente, se observa que las concentraciones promedio de cada 24 horas de SO₂ registradas en las estaciones no superaron el valor de su ECA-aire (250 μg/m³ como media diaria de 24 horas) durante los días monitoreados. Asimismo, se pudo apreciar que para la zona norte, la estación PPD presentó una concentración máxima de 12.8 μg/m³ (07 de octubre); y en la estación CRB una concentración máxima de 7.41 μg/m³ (19 de octubre).

Figura N°08. Variación de las concentraciones del CO, O₃, NO₂ y SO₂ (µg/m³) por decadiaria en el AMLC.

Durante el mes de octubre, las mayores concentraciones del CO se registraron en horarios nocturnos de mayor tránsito vehicular del AMLC (19:00 horas hasta las 00:00 horas). Asimismo, los valores más altos fueron registrados en la decadiaria 2, los cuales estarían asociadas principalmente al incremento de la actividad vehicular (87% de las emisiones de CO provienen de los vehículos a gasolina/gasohol¹¹) durante el mencionado periodo (ver Figura N° 05) y de igual manera, a episodios de disminución de la altura de la capa límite atmosférica (ver Figura N° 01d).

Respecto al O₃ en el AMLC, se registraron las mayores concentraciones en los horarios posteriores al periodo de máxima radiación solar¹² (comprendido entre las 11:00 horas y 15:00 horas). Asimismo, las concentraciones más altas de O₃ fueron registradas en la decadiaria 1 y 2, cuya formación pudo estar condicionada al incremento de la actividad vehicular los primeros y últimos días de la decadiaria 1 así como durante gran parte de la decadiaria 2 (ver Figura N° 05).

Por otro lado, las concentraciones más altas del NO₂ fueron registradas durante la decadiaria 1 y 2, las cuales pudieron estar asociadas principalmente al incremento de la actividad vehicular (89% de las emisiones de NOX provienen de vehículos a diésel¹³) en los primeros y últimos días de la decadiaria 1 así como durante gran parte de la decadiaria 2 (ver Figura N° 05); de igual manera, pudo asociarse a episodios de disminución de la altura de la capa límite atmosférica (ver Figura N° 01d) en los mencionados periodos.

Finalmente, las concentraciones promedio diarias más altas del SO₂ se encontraron durante la decadiaria 1 y 2, las cuales pudieron estar asociadas principalmente al incremento de la actividad vehicular (95% de las

¹³ Estudio: Diagnóstico de la Gestión de la Calidad Ambiental del Aire de Lima y Callao. Obtenido de: https://sinia.minam.gob.pe/documentos/diagnostico-qestion-calidad-ambiental-aire-lima-callao

¹¹ Estudio: Diagnóstico de la Gestión de la Calidad Ambiental del Aire de Lima y Callao. Obtenido de: https://sinia.minam.gob.pe/documentos/diagnostico-gestion-calidad-ambiental-aire-lima-callao

¹² Ozone and volatile organic compounds in the metropolitan área of Lima- Callao, Perú. Obtenido de: https://rdcu.be/3z8c

emisiones de SO₂ provienen de vehículos a gasohol/gasolina¹⁴) en los primeros y últimos días de la decadiaria 1 así como durante gran parte de la decadiaria 2 (ver Figura N° 05) y de igual manera, a episodios de disminución de la altura de la capa límite atmosférica (ver Figura N° 01d) en los mencionados periodos.

5. VIGILANCIA DE LA CALIDAD DEL AIRE A TRAVÉS DE IMÁGENES SATELITALES

La figura N° 09, muestra la distribución espacial de la densidad de la columna vertical troposférica del NO₂ (µmol/m²), obtenidas del satélite Sentinel 5P (instrumento Tropomi) a una resolución aproximada de 5 km x 3.5 km durante el mes de octubre. Es así que, la figura N°09a, muestra la distribución espacial promedio de NO₂ en la primera decadiaria (1 a 10 de Octubre), la figura N°09b, en la segunda decadiaria (11 al 20 de Octubre) y la figura N°09c en la tercera decadiaria (21 al 31 de Octubre).

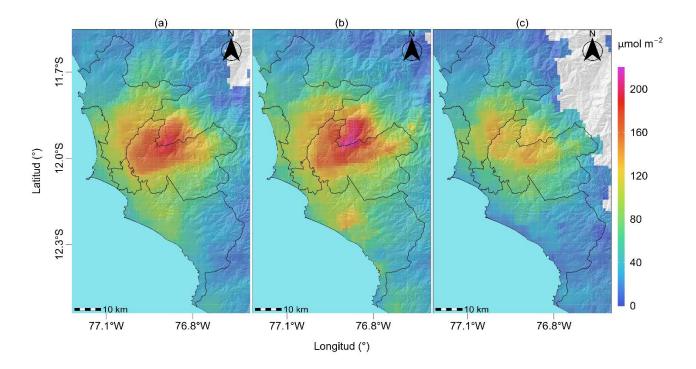


Figura N°09. Distribución espacial de la columna del NO2 (µmol/m²) en la troposfera del AMLC.

Durante la primera decadiaria, la mayor densidad del NO₂ en la columna vertical troposférica se registró principalmente en la zona de Lima Norte, Este y Centro, alcanzando valores máximos entre 139 y 197 μmol/m², lo cual pudo estar relacionado al incremento del tránsito vehicular lento durante los primeros y últimos días (ver Figura N° 05). Durante la segunda decadiaria se presentó un incremento de la densidad del NO₂ con respecto a la primera decadiaria de hasta 154.2%, alcanzando sus mayores valores principalmente en la zona de Lima Este con 212 μmol/m², lo cual pudo estar relacionado a la disminución del tránsito vehicular lento durante dicho periodo (ver Figura N° 05). Finalmente, para la tercera decadiaria hubo una disminución de los valores con respecto a la segunda decadiaria de hasta -90.7%, alcanzando sus mayores valores principalmente en la zona de Lima Este con 139 μmol/m², lo cual pudo estar relacionado a los incrementos del tránsito vehicular lento para los primeros y últimos días (ver Figura N° 05). Cabe precisar que el origen del NO₂ está vinculado a la oxidación del nitrógeno atmosférico por combustión, principalmente de la actividad vehicular.¹5,16

¹⁶ Óxidos de Nitrógeno. Obtenido de: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire/salud/oxidos-nitrogeno.html

¹⁴ Estudio: Diagnóstico de la Gestión de la Calidad Ambiental del Aire de Lima y Callao. Obtenido de: https://sinia.minam.gob.pe/documentos/diagnostico-gestion-calidad-ambiental-aire-lima-callao

¹⁵ Monitoreando el Dióxido de Nitrógeno desde el Espacio. Obtenido de: https://appliedsciences.nasa.gov/sites/default/files/2020-11/Inside_Look_AQ_Spanish.pdf

6. ESTADO DE LA CALIDAD DEL AIRE PARA EL AMLC

El índice de calidad del aire (ICA), está basado en valores establecidos por la Agencia de Protección Ambiental de Estados Unidos (US-EPA por sus siglas en inglés). Los ICAs son valores que permiten informar el estado de la calidad del aire, permitiendo a la población conocer sobre qué tan limpio o saludable está el aire y que efectos podría causar en la salud¹⁷.

6.1. ESTADOS DE LA CALIDAD DEL AIRE PARA EL PM₁₀

La figura N° 10 muestra las concentraciones promedio de 24 horas para el PM₁₀ asociados a su respectivo estado de la calidad del aire, en la cual se observa que la estación CRB presentó 31 días con estado de calidad del aire "Bueno". La estación SMP presentó 2 días con estado de calidad del aire "Moderado" y 29 días con estado de calidad del aire "Bueno". La estación SJL presentó 18 con estado de calidad del aire "Moderado" y 9 días con estado de calidad del aire "Bueno". La estación CRS presentó 23 con estado de calidad del aire "Moderado" y 3 días con estado de calidad del aire "Bueno". La estación STA presentó 31 días con estado de calidad del aire "Bueno". La estación VMT presentó 4 días con estado de calidad del aire "Moderado" y 19 días con estado de calidad del aire "Bueno". La estación VMT presentó 4 días con estado de calidad del aire "Moderado" y 27 días con estado de calidad del aire "Bueno".

CRB SMP 33.5 33. 33.4 32.9 57.5 ¹³ 25.4 29.6 32. 28 29.3 32.2 34.6 30.9 37.2 56.2 48.7 22.137. 23.1 38.4 29.3 23.1 25.4 26.3 21.5 20.1 19.4 19.7 41.2 34.2 29.4 45.4 24.7 24 29.6 34.4 24 26.3 30.9 23.7 24.9 25.7 29 36.5 24.2 17.1 36.7 31 34.3 29 33.2 30.8 35.4 43.9 SJL CRS 63.5 ⁶ 94.3 ¹³ 58.5 62 58.1 ³ 77.1 ⁴ 65.7 ° 63.3 60.7² 63.4 ° 85.8 4 64.6 50.5 61.4 69.6 ¹¹ 87.7¹² 56.6 ¹⁰ 102 12 66.9 ° 57.5° 49.5° 87.6 73.2 60.9 81.6 66.7 ¹⁶ 68.9¹⁷ 62.4 ¹⁸ 55.4 ¹⁹ 82.9 ¹⁵ 71.7 42 45.3° 90.2 78.9 63.1 20 71.7 82.5 23 71.6 27 73 23 50.8²⁴ 29.2 25 40.4 26 51.3 65 56.1 38.2 50.2 50.6 49.6° 69.7 91.6° 92.5 STA SBJ 31.2 31.6 38.9 31.7 31.2 46.5 50 51.9 59.5 54.7 49.9 50.8 42.4 12 27.9 35.2 25.3 33.4 44.2 38.5 46.6 70 44.5 63.7 81.8 94.7 80.1 37.1 15 34.8 16 32.3 23.3 12.7 11.1 11.3 65.7 56.2 63.4 53.3 51.3 36.9 44 9.8^{-22} $25.2^{^{23}}$ 24 25 27.7 24 25.8²⁶ 32.3 27 24.8° 33.1 53.8 38.1 34 42.5 57.4 52.4 39.1 29 33.3 30 41.7 ° 51.4 56.8 75.7 Vie Dom Lun Mar Mie Jue Sab VMT 37 45.8 41 46.2 47.5 35.5 29.7 34.8 8 41.8 45.8 51.8 60.6 13 56.9 38 50.3 ¹⁵ 38.3 29.1 35.4 42 19.7 31.3 29.4 27 24.2 22 26.5 26 35.9²³ 26 21.4 36.8 76 74.3 31 Dom Mie Vie Sab Lun Mar Jue

Figura N° 10. Estados de la Calidad del Aire para PM₁₀

Concentración PM ₁₀ (μg/m³)		Estado	Índice de Calidad del Aire - EPA	
0	54	Buena	0	50
55	154	Moderada	51	100
155	254	Insalubre para grupos sensibles	101	150
255	354	Insalubre	151	200

¹⁷ Air Quality Index. A guide to Air Quality and Your Health. Obtenido de: https://www.airnow.gov/sites/default/files/2018-04/aqi brochure 02 14 0.pdf

-

6.2. ESTADOS DE LA CALIDAD DEL AIRE PARA EL PM_{2.5}

La figura N° 11 muestra las concentraciones promedio de 24 horas para el PM_{2,5} asociados a su respectivo estado de la calidad del aire, en la cual se observó que la CRB presentó 31 días con estado de calidad del aire "Moderado". La estación PPD presentó 2 días con estado de calidad del aire "Insalubre para grupos sensibles" y 20 días con estado de calidad del aire "Moderado". La estación SMP presentó 30 días con estado de calidad del aire "Bueno". La estación SJL presentó 10 días con estado de calidad del aire "Insalubre para grupos sensibles" y 17 días con estado de calidad del aire "Insalubre para grupos sensibles" y 1 día con estado de calidad del aire "Moderado". La estación CRS presentó 8 días con estado de calidad del aire "Insalubre", 17 días con estado de calidad del aire "Insalubre para grupos sensibles" y 1 día con estado de calidad del aire "Moderado" y 3 días con estado de calidad del aire "Bueno". La estación SBJ presentó 30 días con estado de calidad del aire "Moderado" y 1 día con estado de calidad del aire "Bueno". La estación CDM presentó 2 días con estado de calidad de aire "Insalubre para grupos sensibles", 12 días con estado de calidad del aire "Moderado" y 1 día con estado de calidad del aire "Bueno". La estación VMT presentó 2 días con estado de calidad de aire "Insalubre para grupos sensibles" y 29 días con estado de calidad del aire "Moderado".

CRB PPD 27.6 28.2 31.3 ° 22.9 28.2 33 32.1 ⁵ 31.5 ° 28.3 26.7 29 27.9 34.1 28.7 13 19.6 ¹⁰ 26.5 11 27.3¹² 19.2 ⁸ 25.4 ¹⁴ 32.2 12 22.1 24 16.6 26.9 37.7 24 15 19.1²⁰ 23.8 16 17.7 ¹⁸ 17.8 ¹⁹ 21.4 21 20.3 17 34 22 23 20.3 22 22.1 24 19.5²⁵ 20.5 26 26.1 27 19.1²⁸ 31.1 33.7 30.2 29 20.9 29 21.2³ 26.9³¹ 29.3 SMP SJL 20.7 ² 24.7 22.4 ° **19.6** ⁷ 23 28.4 34.2 34.2 43 32.9 37.4 29.2 18.5 34.5 25.2 11 35.4 ¹² 34.5 ¹³ 25.1 ⁹ 18.4 ¹⁰ 44.9 ¹³ 20.5 ⁸ 30.7 14 26.9 ^s 45.2 12 35 27 42.3 38.4 23 18 26.1 ¹⁷ 20.2 19 16.3²⁰ 31.4 15 28.3 16 34.6 18 39 17 19.8²¹ 19 26.1²⁰ 39.8 15 40.1 16 26.5²¹ 32 17 ²⁴ 24 22 16.8²² 41 23 30.4 24 19.8²⁵ 28.4²⁷ 14.8²⁶ 18.9²⁷ 23.4 23 13.6²⁸ 11.7²⁵ 22 18.1²⁹ 31 19.6 27 CRS STA 43.2 47.7 45 24.6 25.8 31 **25.2** ^⁵ 25 21.7 44.7 63.9 46.1 ⁷ 24.5 32.5 12 32.7 13 19.9¹⁰ 27.2 ¹¹ 71.3 22.3 ⁸ 28.91 41.2 8 50.7 42.3 59.9 26.8 26.2 ¹⁷ 30.6 15 12.6 ¹⁹ 29.3 ¹⁶ 67.7 55.6 20 61.1 45.1 51.2 11 11.2 22.4 24 20.6 23 39.3 22 45.1²⁷ **57.8**²³ 46.9 20 20.3° 35.9 35.5 34 9.8 22 24.8 18 22.8 30 31.4 31 57.3 26.9 35.5 29 52.4° CDM SBJ 18.7 ² 17.4⁻¹ 21.2 ° 24.1 20.5° 19 18 19.3 ° 22.9 9 15.1 ¹⁰ 22.6 11 30.1 ¹² 31.7 13 11 28.8 14 19.3 ¹⁹ 13.6²⁰ 22.8 17 19.3 ¹⁸ 25.5 ¹⁵ 23.4 16 17.4²¹ 15 13.6²⁰ 14.5 21 41.6 18 44.1 31 19.4 27 13.5²² 20.8 23 15.6²⁸ 13.9 26 11.6 25 16.5²⁶ 14.9²⁴ 12.5 18.3 14 19.9 16.9 15.5²⁹ 30 26.1³¹ 22 19 23.9 25.5 Vie Sab Dom Lun Mar Mie Jue VMT 26.7 ⁵ 22.9 ° 23.7 26.1² 23.6° 28.9 4 19.6 ⁷ 32.4 ¹² 34.8 14 21.7 8 22.3 10 31.5 11 36.4 13 29 27.3 ¹⁹ 15.8²⁰ 35 ¹⁵ 23.3 18 27.1 ¹⁶ 22.5 17 22.8 21 18.1 ²² 23.3 23 20.4 27 21.5 28 17.6²⁵ 18.7²⁶ 18.6° 21.1 29 34.8 35.8 Mar Mie Jue Vie Sab Dom Lun

Figura N° 11. Estados de la Calidad del Aire para PM_{2,5}

Concentración PM _{2,5} (μg/m³)		Estado	Índice de Calidad del Aire - EPA	
0	12	Buena	0	50
12.1	35.4	Moderada	51	100
35.5	55.4	Insalubre para grupos sensibles	101	150
55.5	150.4	Insalubre	151	200

7. CONCLUSIONES

- Las condiciones meteorológicas influyeron en el comportamiento diario de los contaminantes del aire en el AMLC durante el mes de octubre. La disminución de la altura de la capa límite atmosférica e incremento de la temperatura en la decadiaria 2 y 3, favoreció al incremento del PM₁₀. Asimismo, la disminución de la altura de la capa límite atmosférica en la decadiaria 2 y 3, sumado a la presencia de un APSO intenso generaron condiciones para un incremento del PM_{2,5}.
- Los valores altos del tránsito vehicular lento que se presentaron en la decadiaria 2 y 3 influyeron en el incremento de las concentraciones de PM_{2,5} de acuerdo a los registros de la REMCA. En el caso de los contaminantes gaseosos como el CO, O₃, NO₂ y SO₂ se presentaron altos registros de concentración para los horarios y días con incrementos del tránsito vehicular lento.
- Las concentraciones diarias del PM₁₀ mostraron en promedio un incremento en la decadiaria 2 y 3; siendo la estación CRS la cual superó su respectivo ECA-aire durante la decadiaria 2. Asimismo, las concentraciones diarias del PM_{2,5} fueron mayores en la decadiaria 2 y 3; siendo la estación CRS, la cual superó su respectivo ECA-aire en ambas decadiarias.
- La densidad de NO₂ en la columna vertical troposférica mostró sus mayores valores durante la decadiaria 2 principalmente en las zonas Norte, Este y Sur. Estos valores también se vieron reflejados en los valores altos de las concentraciones en superficie registradas por las estaciones de la REMCA.
- Con respecto a los estados de la calidad del aire para el contaminante PM₁₀, se pudo apreciar que las estaciones CRS, SJL y SBJ presentaron la mayor cantidad de días con estado de calidad del aire de "Moderado". Por otro lado, para el contaminante PM_{2.5}, la estación CRS alcanzó 8 días con estado de calidad del aire de "Insalubre" y además presentó la mayor cantidad de días con estado de calidad del aire de "Insalubre para grupos sensibles", seguido de la estación SJL y en menor medida de la estación PPD y VMT.

8. PERSPECTIVAS DE LA CALIDAD DEL AIRE PARA EL MES DE NOVIEMBRE 2023

De acuerdo al pronóstico climático¹⁸ para el mes de noviembre del 2023, se espera que en el AMLC las temperaturas máximas y mínimas estén por encima de lo normal. Asimismo, teniendo en cuenta el comportamiento estacional de estas variables, se esperaría un ligero incremento de las concentraciones de PM₁₀ y que las concentraciones de PM_{2.5} se estarían manteniendo en un rango similar a las registradas en el mes de octubre.

¹⁸ Documento: Boletín climático nacional – setiembre 2023 SENAMHI. Obtenido de: https://www.senamhi.gob.pe/load/file/02215SENA-124.pdf

16

Para más información sobre el presente informe, contactar con:

Ing. Jhojan Pool Rojas Quincho <u>iprojas@senamhi.gob.pe</u> Subdirector de Evaluación del Ambiente Atmosférico

Elaboración

Ing. José Hitoshi Inoue Velarde (jinoue@senamhi.gob.pe)

Ing. Elvis Anthony Medina Dionicio

Ing. Dayana Lucero Acuña Valverde

Bach. Hanns Kevin Gómez Muñoz

Apoyo

Tec. Rosalinda Aguirre Almeyda

Para estar informado permanentemente sobre la EVOLUCIÓN HORARIA DE LOS CONTAMINANTES PRIORITARIOS DEL AIRE en Lima Metropolitana visita este enlace:

http://www.senamhi.gob.pe/?p=calidad-de-aire

Encuentra los últimos 6 BOLETINES MENSUALES DE LA VIGILANCIA DE LA CALIDAD DEL AIRE de Lima Metropolitana en el siguiente enlace:

http://www.senamhi.gob.pe/?p=boletines

Suscribete al **BOLETÍN MENSUAL DE LA VIGILANCIA DE LA CALIDAD DEL AIRE** de Lima Metropolitana en el siguiente enlace:

https://forms.gle/a4hpxqSc8KLj47sQ6

Próxima actualización: 15 de diciembre del 2023